The 12th Geneva Association Annual Liability Regimes Conference

Session 1: Industry 4.0 – Industrial Applications of the Internet-of-Things

Munich, 17-18 November 2016
SPEAKERS – Session 1

Christian Fuhrmann (Session Chair)
Chief Executive Global Clients/North America, Munich
Re

Hans-Jörg Bullinger
Fraunhofer-Institutszentrum Stuttgart

Thomas Hemker
Security Strategist Symantec

Sebastian Lach
Partner Hogan Lovells LLP
Industry 4.0
Definition, Impacts, Challenges & Opportunities

Hans-Jörg Bullinger
Fraunhofer-Gesellschaft
www.fraunhofer.de
The Fraunhofer-Gesellschaft: Europe’s largest organization for applied research

- More than 80 research institutions, including 67 Fraunhofer institutes
- International collaboration through representative offices in Europe, the US, Asia and the Middle East
- Approx. 24,000 staff
- Budget: 2.01 Bill. Euro
- Institutes work as profit centers
- One-third of the budget consists of income from industrial projects
- Spinoffs by Fraunhofer researchers are encouraged

Central administration in Munich
Research transfers money into knowledge –
Innovation transfers knowledge into money
Success stories – Made by Fraunhofer

Some of the most popular inventions...

- **MP3** – from a trendsetting technology to a global standard

- **H.265/HEVC** is the next-generation video compression standard

- **Highly efficient solar cells** and concentrator modules with a record-efficiency of 44.7%

- **White LEDs** and **OLEDs**
Industry 4.0
Towards an Industry 4.0
Cooperation within social networks

1. Industrial Revolution
Mechanical production with water and steam power

End of 18th century
Work: instruction
Processes: rigid
Resources: based on prediction

Beginning 20th century
Work: workers’ participation
Processes: flexible
Resources: consumption

Beginning 1970
Work: cooperation
Processes: adaptive in real-time
Resources: order related

Today
Work: cooperation
Processes: adaptive in real-time
Resources: order related

2. Industrial Revolution
Work-sharing mass production with electrical power

Ford assembly line
Beginning 20th century

3. Industrial Revolution
Electronics and IT for automation of production

First programmable controller
»Modicon 084« 1969

4. Industrial Revolution
Basis: Cyber-Physical Systems

»Smart Factory«

Complexity

End of 18th century
Beginning 20th century
Beginning 1970
Today

Previous: Ford assembly line, Beginning 20th century
Next: »Modicon 084« 1969

Previous: »Modicon 084« 1969
Next: »Smart Factory«
Vision #1: Cyber-Physical Systems and IoT

Cyber-Physical Systems
- via IP addresses connected objects with embedded hardware and software that interact with their environment.
- Objects that consist of their real and virtual representation and keep them up-to-date in real-time over their entire lifetime.

Internet of Things (IoT)
- The Internet of Things is the technical vision, to integrate objects of any kind into a universal digital network. The objects have a unique identity (smart objects) and are / move in a 'smart' environment.”

[Federal Ministry of Economics and Technology 2007]

Expectations: significant decrease in planning processes over the life cycle, data acquisition and data processing.

Intelligent carrier
Source: Fraunhofer IML
Swarm of cellular transport vehicles

© Fraunhofer IAO, IAT Universität Stuttgart
Vision #2: Big and Smart Data

Big Data

- Real-time processing of large unstructured data offers new interrelations for process and product improvement
- Real-Time data processing and process transparency can be used to make better decisions than today

Expectations: significant decrease in interaction, clarification and escalation processes, better process knowledge and new business models.
Vision #3: Real-Time Data Integration over Value Chains

Expectations: real-time traceability and manipulation; novel business opportunities and models.
Vision #4: Significant added value expected

The added value of Industry 4.0 is greater efficiency in the area of:

- Networked machines (M2M): 72% Agree (completely), 20% Agree in part, 9% Do not agree (at all)
- Supply chain: 78% Agree (completely), 16% Agree in part, 6% Do not agree (at all)
- Order processing: 77% Agree (completely), 17% Agree in part, 6% Do not agree (at all)
- Product creation: 46% Agree (completely), 34% Agree in part, 21% Do not agree (at all)
- Shopfloor management: 72% Agree (completely), 21% Agree in part, 7% Do not agree (at all)

High expectations regarding efficiency gains by industry 4.0 – within own processes and across the value chain.

Source: Ingenics AG/Fraunhofer IAO (2015): Industry 4.0 – A revolution in work organization
The potential Value Effect of Industry 4.0 for Western Europe is about 420 Billion Euro*
Increase of ROCE from 18% up to 28% until 2035

* net profits and savings in capital employed would be the value effect of Industrie 4.0.
** adoption rate of 50% for Industrie 4.0 solutions until 2035.
*** The created jobs by new industrial activities bear little resemblance to old ones and are based on an entirely different business model.

ROCE = Return on Capital Employed

Source: Roland Berger 2016
Industry 4.0 has to be worked out

How would you rate your company in terms of its preparation for Industry 4.0?

- 6% Very prepared
- 39% Prepared
- 55% Not prepared

Only 6% of enterprises consider their Industry 4.0-preparations as very high.

Does your company have an Industry 4.0 strategy?

- 29% Yes
- 71% No

Only 29% of enterprises have implemented Industry 4.0 as strategic initiative.

Industry 4.0 has to be worked out – it is penetrating enterprises top-down.

Source: Ingenics AG / Fraunhofer IAO (2015): Industry 4.0 – A Revolution in work organization
Production and Digitization
Production in former times ...

Source: Bundesarchiv, Germany
Production today
»Lean, clean & green«

Source: Volkswagen AG
Production of the Future
6 challenges are transforming industrial production

1. Horizontal and vertical system integration
2. Visualization
3. Augmented Reality
4. Industrial Internet of Things
5. Human-Robot interaction
6. IT-Security
Challenge 1: Horizontal and vertical system integration
Digitization of value added systems

- Further development of industrial value added systems
- Coupling of machines via the internet
- Technological perfection of production plants with high integration of employees, customers and users

Sources: BITKOM, Fraunhofer IAO
Challenge 1: Horizontal and vertical system integration

Digital production supports the management of a fully digitized and holistic value added

- Product life cycle is fully digitized
- Enabler for an integrated product development
- Access to Big Data in all stages of the product life cycle

Challenge 2: Visualization

Visualization – 3D CT scans for digitization

The world’s smallest and largest CT-Scanners at the development center for X-ray technology (EZRT) in Fürth, Germany. With two eight-meter-high steel towers and a turntable of three meters in diameter, oversized objects can be completely and non-destructively scanned and displayed in 3D.
Challenge 3: Augmented Reality

Mobile devices offer new opportunities due to the use of current manufacturing data

Expert survey:

- agree 72.7%
- indifferent 19.0%
- disagree 8.3%

Sources: Fraunhofer IAO: Produktionsarbeit der Zukunft – Industrie 4.0; itizzimo
Challenge 4: Internet of Things (IoT)
The Internet of Things is the technical vision, to integrate any objects in an universal digital net.

Who communicates with whom?

- Machine2Machine (M2M)
- Person2Machine (P2M)
- Thing2Machine (T2M)

... and why?

- Best solution linking the physical and digital world
- Added value: Simplification, improvements in productivity and improvement of the work/life-balance via embedded systems

Technical requirements

- RFID-Chips = Intelligent localization technology
- Sensors & Actuators
- Cloud Technology
- IPv6 Advanced address for smart objects
- Data Analytics

Internet ability for all objects
High performance broadband infrastructure
Joint standards & interfaces
New business models
Information integration & exchange platform

Industrial Data Space
Challenge 5: Human-Robot Interaction
Physical assistance with cooperating robots

- Shared working space
- Quick installation and operation in different settings

Lightweight portable robot as physical assistant

Source: Fraunhofer IPA, IOF

3D-Human-Machine-Interaction with sensor technology (e.g. with gesture)
Challenge 6: IT-Security

Why we do not perceive threats and risks of IT

- The time for a change in our perception is still too short in human evolution.
- There is no receptor for the sensory perception of digital operations.
- Our imagination is not wide enough for many threats and risky operations in IT.
- Our qualification is not sufficient for the various possibilities of global IT-networking.

Awareness raising, education and training are pre-settlements to avoid hazards and risks through IT.
Challenge 6: IT-Security
»Cyber-Security 2020« - A 7-point program for IT security in Germany

1. **Digital sovereignty** - Germany needs to become independent in the core areas of IT security

2. **Application laboratories for cyber security** - security research must be proven in practical use

3. **Security by Design** - security needs to be inside from the very beginning

4. **Verifiability by third parties** - security has to be trustworthy

5. **Privacy by Design** – there has to be a responsibility for the privacy protection and confidentiality of personal data

6. **Location Images for decision-makers** - awareness of their own (in)security

7. **Human IT security** - technology must not overwhelm the people

Source: Fraunhofer-Gesellschaft, 2014
Conclusion
Production of the Future
6 challenges are transforming industrial production …

1 Horizontal and vertical system integration
2 Visualization
3 Augmented reality
4 Industrial Internet of Things
5 Human-Robot interaction
6 IT-Security

… and have a dramatic impact on Industry 4.0
Fraunhofer

Working for the future.
Managing Cyber Risk in an Industry 4.0 era.

User Perspective

Thomas Hemker, CISSP, CISM, CISA
Security Strategist
AGENDA

• Cyber Security
• Risk Management
• Industry 4.0 Threat landscape
• Requirements
• Q&A
Thomas Hemker, CISSP, CISM, CISA
Cyber Security

Confidentiality

Integrity

Availability

Safety
<table>
<thead>
<tr>
<th>Functions</th>
<th>Categories</th>
<th>Subcategories</th>
<th>Informative References</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPOND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECOVER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Framework Core Structure

Figure 2: Notional Information and Decision Flows within an Organization

Risk Management

Executive Level
Focus: Organizational Risk
Actions: Risk Decision and Priorities

Business/Process Level
Focus: Critical Infrastructure Risk Management
Actions: Selects Profile, Allocates Budget

Implementation/Operations Level
Focus: Securing Critical Infrastructure
Actions: Implements Profile

Change in Current and Future Risk

Mission Priority and Risk Appetite and Budget

Implementation Progress
Changes in Assets, Vulnerability and Threat

Framework Profile

Threat Landscape - Vulnerabilities

Vulnerabilities Disclosed in Industrial Control Systems

- At least seven zero-day vulnerabilities directly related to a variety of different ICS manufacturers and devices in 2015.

https://www.symantec.com/security_response

© Fraunhofer IAO, IAT Universität Stuttgart
Copyright © 2016 Symantec Corporation
Threat Landscape – Targeted Attacks

Spear-Phishing Email Campaigns

In 2015, the number of campaigns increased, while the number of attacks and the number of recipients within each campaign continued to fall. With the length of time shortening, it’s clear that these types of attacks are becoming stealthier.

https://www.symantec.com/security_response/
IEC 62443

Industrial communication networks – Network and system security

<table>
<thead>
<tr>
<th>General</th>
<th>Policies & Procedures</th>
<th>System</th>
<th>Component / Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Terminology, concepts and models</td>
<td>2-1</td>
<td>3-1</td>
</tr>
<tr>
<td>1-2</td>
<td>Master glossary of terms and abbr.</td>
<td>2-2</td>
<td>3-2 Security Risk Assessment and System Design</td>
</tr>
<tr>
<td>1-3</td>
<td>System security compliance metrics</td>
<td>2-3</td>
<td>3-3 System security requirements and security levels</td>
</tr>
<tr>
<td>1-4</td>
<td>IACS security lifecycle and use-case</td>
<td>2-4</td>
<td></td>
</tr>
</tbody>
</table>
Evolution to Industry 4.0

New Security Approach/Technology

Levels 4/5 – Corporate IT

DMZ

Level 3 - Application

Level 2 - Control

Level 1 - Controller

Level 0 - Process

Network Security Analytics

Internet
Extrinsic Security
Add-on Security

PC/Datacenter Era
• Bolt-On Security
• Layers of Security added to PCs, Servers, Networks and Devices

Intrinsic Security
Security-by-Design

Internet of Things Era
• Built-In Security
• Security built into the device at manufacturing time
Summary

• Information Security -> Safety
• Cyber Security Framework Adoption
• Risk Management Maturity
• Threat Landscape – More Bad things
• Controls, Countermeasures, Frameworks
• New Approach/Technology required
• Transferring Risk?
An Internet of Things Reference Architecture

http://www.symantec.com/iot/
http://www.symantec.com/cyber-insurance/

Industry Experts Report:

What Every CISO Needs to Know About Cyber Insurance

Who should read this paper
CISOs and other leaders involved in cyber insurance decisions
Liability risks industry 4.0
Dr. Sebastian Lach, Partner, Munich
Industry 4.0 - Risks

Software as new "tool" introduces new technical and legal risks

Interconnection of processes and companies can lead to new liability dimensions

Unique new issues like cyber breaches

➤ Legal regimes to address risks already exist, but new issues and questions to be answered
Main legal fields of liability risks for industry 4.0
Product Liability
Scenarios – Not only consumer safety!

Product Liability

- Defective end product
- Health damages in production process

New and increasing risks due to industry 4.0
"Software" vs. "Product"

Product Liability Directive (85/374/EWG)

"For the purpose of this Directive 'product' means all movables [...], even though incorporated into another movable or into an immovable [...]. 'Product' includes electricity."

Product Safety Directive (2001/95/EG)

"Product" shall mean any product - including in the context of providing a service [...]."
Possibilities to address liability risks

Separate delivery of the product and the software

Download/stream the software
- A simple download/stream is probably no product
- But warranty rights under purchase or service contract etc.

Licensing of the software only/retain ownerships of products
Supply Chain
Allocation of risks in the supply chain
Before we start – How are contracts made?

What is communication between machines?
- Mere technical exchange or legally relevant communication?

If legally relevant communication
- Is machine messenger ("Bote") of the principal?
- Is machine agent/representative ("Vertreter") of the principal?

➤ Distinction relevant for contractual side and liability
Possibilities to address liability risks

Separate delivery of the product and the software
Download/stream the software
Licensing of the software only/retain ownerships of products

Carefully draft contracts
- Clear product description (instead of liability limitation/T&C!)
- Clear allocation of responsibilities, in particular in case of connection through or combination with software
- Clear allocation of burden of proof
- Clear provisions on inspection of incoming and out-going goods (Sec. 377 HGB)
- Applicable law and arbitration clauses
Cyber Breaches
Risk from cyber breaches (1/2)

What is a state of the art breach defense system ("Defect")?

Updates

How quickly and for how long will systems have to be updated (patches)?

Instructions

What instructions are needed for the user?

Breaches will occur!

From the outside

When is a cyber breach an inevitable attack from the outside, when is it an unacceptable weakness of the system?

From the inside

What changes if the attack comes from the inside of the company ("rogue employees")?

Fiat/Chrysler issue first major case that led to recall after cyber breach
Risk from cyber breaches (2/2)

Some potential follow on steps:

1. Review cyber security systems/separation of data from connection

2. Seek political clarification for notion of defect from law makers and through industry standards

3. Establish system for updates (+ allow access) and mirror in sales contracts

4. Check need and right of monitoring for non-updaters

5. Quick action force for cyber-breaches (notification requirements)

6. Review product instructions in this regard and clarify internal access to systems/data and safeguards
Work Safety
Work safety related risks can be triggered by various factors

- Breaches
- Bugs
- "Miscommunication" / Interruption/Incompatibility
- Development Risks

➢ High focus on topic by authorities with significant risks for individuals and company
The "Thyssen Krupp" case (1/2)

Accident in Turin plant (Dec 2007)
Death of 7 workers due to severe burns
- Alleged violation of health and safety standards

Criminal Court in Turin, 15 April 2011:
- 16.5 years imprisonment for ThyssenKrupp's director in Italy
 - Guilty of voluntary manslaughter
- 10 – 13 years imprisonment for other managers
- Company: EUR 1 million fine; EUR 21 million damages; Legal costs
- Prohibition from advertising products in Italy

Court of Appeals in Turin reduced sanctions, 28 February 2013:
- 10 and 7 - 9 years
- Negligent homicide instead of voluntary manslaughter
The "Thyssen Krupp" case (2/2)

Supreme Cassation Court, 24 April 2014:
- Annulled sanctions but referred case back to Court of Appeals to recalculate sentences

Court of Appeals in Turin, 29 May 2015:
- Reduced sentences of all six Defendants:
 - 9 years and 8 months for director
 - From 6 years and 8 months to 7 years and 6 months for the other five managers
The Yates Memorandum (1/2)

Department of Justice announces guidance on pursuing managers in investigations against companies (9 September 2015):

- Investigations can be conducted against managers and employees, who could face criminal prosecution and lengthy prison sentences
- Companies being investigated are obliged to disclose all relevant facts about their own employees in order to demonstrate sufficient cooperation with the authorities
The Yates Memorandum (2/2)

Relevance for companies:

- Effects on internal investigations
 - Employees could be hesitant to take part in interviews
 - Tolling agreements "should be the rare exception"
- Disruption of day-to-day business
- Additional costs for the company

"One of the most effective ways to combat corporate misconduct is by seeking accountability from the individuals who perpetrated the wrongdoing."

Sally Yates, Deputy Attorney General
Criminal liability of individuals

• Increasing exposure to criminal liability
• Trend to severe sanctions
• Example for Germany
 – Provisions on causing bodily harm in the criminal code ("StGB") can address product safety issues that lead to health damage
 – Sec. 130, 30 OWiG can address corporate fines
 – Fraud provisions (sec. 263 StGB) can address safety and non-safety issue and currently represent the most crucial risk

➢ Personal criminal liability one of major worries of senior executives
Civil liability of individuals

Contract law liability
- Towards company
- For breaches of duty
- Responsibility

Corporate law liability
- Towards company
- Sec. 93 of the German Stock Corporation Act (AktG)
- Sec. 43 of the German Limited Liability Companies Act (GmbHG)
- For violation of the legal responsibility of care (e.g. taking unnecessary liability risks)
Establish robust product compliance system

Robust global compliance guidelines

Structure of compliance surveillance (compliance department, internal auditing) with spot test

Codes of conduct that establish clear rules for employees for design, manufacture, product information and product monitoring

Regular compliance education/training for employees

Specific assessment of possible health risks and their avoidance (e.g. HSE system, workers protection)
Example of robust product safety system

- Clear guidelines
- Clear reporting
- Clear responsibilities
- Clear delegation

Information Management System

Executive Board

Supervisory Board

Product Safety Committee

Quality/After-market

Distribution

Procurement

R & D

Email-Box

Sensor in the field

Warranty claims

Legal

Access

Legal disputes

© Fraunhofer IAO, IAT Universität Stuttgart

F68
Summary
Industry 4.0 raises new legal questions and introduces new risks

Innovation speed will increase which might make risk management harder to handle

Regulators and public are more aggressive in their approach

Data will lead to new risks (cyber breach) and will make infractions traceable (storage of information)

- Companies are looking for answers for company and individual liability to feel comfortable about taking the risks of a faster and globalized world
Liability risks industry 4.0
Dr. Sebastian Lach, Partner, Munich